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LETTER TO THE EDITOR 

Chaotic behaviour in sphaleron solution 

Tetsuji Kawabe 
Physics D e p m e n t ,  Kyushu Institute of Design. Shiobaru, Fukuoka 815. Japan 

Received 10 August 1993 

Abstract. We investigate the dynamical system derived from the SU(2) Yang-Mils-Higgs 
theory with sphaleron solution for the c~se of spatial homogeneity. Numerical studies of the 
P o i n d  surface of section and the Lyapunov chqcteristic exponents show that this system 
exhibits an order-bo-chaos tCaII5i60fl similar to one'found in the SU(2) magnetic monopole 
solution, which saongly suggests that such a m i t i o n  is characleristic of the non-Abelian field 
theories with non-trivially topological solitons. 

Recently there has been much interest in the sphaleron solution of the SU(2) Yang-Mills- 
Higgs (YMH) equations with a doublet of scalar fields 111. Its role becomes non-trivial in 
the presence of fermions and connects with a strong fermion number non-consemation. 

The exact structure and dynamical properties of the sphaleron solution cannot be 
determined analytically. Thus, various properties of the sphaleron have been studied 
numerically by the variational techniques [2] and the application of the linear stability (31. 
These numerical studies, however, have their limit for the study of the dynamical properties 
such as the instability and the bifurcation of the solution. Especially, the global structure of 
the sphaleron in the phase space has not been studied sufficiently and it is not clear whether 
or not the sphaleron exhibits a chaos. Since the chaos of the topological solitons, e.g. the 
magnetic monopole solution 14.51, in the S U ( 2 )  Yang-Mills (YM) and YMH theories has 
attracted much interest in various high-energy physics fields, it is important io examine the 
chaotic properties of the sphaleron solution. 

In this letter we study the dynamical propelties of the sphaleron solution from the 
viewpoint~of chaos. In the present analyses we assume that the YM and the Higgs fields are 
spatially homogeneous. In other words, we consider the fields in the region of space in which 
their space fluctuation is small compared with their time fluctuations. This,approximation 
has been widely used in the study of the dynamics of both the classical YM and YMH field 
theories [6]1 From the homogeneous assumption the system we consider is reduced to a 

The sphaleron solution is a saddle-point configuration in the SU(2) YMH theory, whose 
nonlinear mechanical system. . 

Lagrangian density is given by [I] . -  

L -1 4 F' PV F'"a f (Dp@)t[Dw$) - V(@)  (1) 

where Fa = a,A; - a,A; +ge""A~A;, (D&) = -igA,$, and Ap.=  A;T". The 
element of the gauge group is given by T O  = u"j2. Here U% denote the Pauli matrices. 
The Higgs potential is V ( $ )  =A($+$ - 4 ~ ~ ) ~ .  
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The Euler-Lagrange equations are 

From the homogeneous approximation, i.e. aiAP = 0 and a;@ = 0, and the gauge 
condition as A: = 0, the above field equations reduce to the following equations of motion: 

@ +g2(APAj - APAP)Aj + ~ g Z A ~ @ t ( ~ 4 , 0 b ] r $  = O  
4 + ig2A7Afu"ob@ +2A(4'6 - $U')@ = 0 

(4) 

(5 )  

and the Gauss-law constraint is 

(6) 

Now we take the following ansatz as A: = c.ijuj(t) and @ = i n .  b(f) (y )  for the YM 
field and the doublet of the Higgs scalar fields, respectively. In order to fulfill the Gauss-law 
constraint, we put ai@) = x ( l )  and bi(r) = y ( l ) ,  i = 1,2,3. After appropriately rescaling 
the variables, we obtain the system of two degrees of freedom as 

&bcA; b Ai .e - -(@to"& -&'U'@) = 0. 
2 

X=--x 1 3  -_  
2 :Y2x 

j i  = -Lx' 4 Y - f 4 Y ' -  1)y 

where K = h / g 2  is the coupling constant. The resulting system has the Hamiltonian as 

which describes the motion of a particle in a two-dimensional potential well W ( x ,  y) .  
We first apply the Poincad. surface-of-section method [7] to the system of equations (9) 

and (10). This section is defined by x = 0, px > 0, which is a projection on the ( y ,  p y )  
plane. Regular regions on the surface of the section are characterized by sets of invariant 
Kolmogorov-Amold-Moser (KAM) curves, whereas irregular regions are characterized by 
a scatter of points limited to a finite phase space due to the energy conservation. We have 
numerically integrated (7) and (5)  with a fourth-order RungeKutta routine with a time step, 
At, equal to IO-'. The size of Al is chosen so that any reduction of the size does not 
cause significant change in the results. Figure 1 depicts the surfaces of section with the 
energy E = 1.0 and the coupling constant K = 0.1, 0.4, and 1.0. We see from figure I(u) 
that the entire phase space is almost covered by the KAM curves and thus the system is 
near-integrable. As we increase K, some of the KAM curves begin to break up and we 
observe the coexistence of the KAM curves and stochastic orbits as shown in figure l(b). As 
we further increase K, the KAM curves and islands disappear and almost all regions of the 
phase space tum into the stochastic region as shown in figure l(c). Thus we see that the 
relative area of the stochastic region strongly depends on K and there is a transition from an 
almost all-regular state to an almost all-irregular state. We have ma& similar analyses for 
E = 10.0 and E = 100.0 and confirmed that the above results do not change qualitatively. 

In order to determine whether or not ow system exhibits chaos, we need to evaluate the 
Lyapunov characteristic exponents [7J. They are related to the exponentially fast divergence 
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Figure 1. The Poincar6 surface of section with E = 1.0. (a) K = 0.1. (b)  K.= 0.4, (c)  Y = 1.0. 
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or convergence of nearby orbits in the phase space. The spectrum of the Lyapunov exponents 
is defined by the long-term evolution of an infinitesimal M-sphere of initial conditions in the 
M-dimensional phase space [7,8]. During the evolution the sphere is becoming distorted 
into some ellipsoidal shape. The Lyapunov exponents u4 (i = 1.2, . . . , M )  measure the 
exponential growth of the principal axes of this ellipsoid as follows: 

where p&) is the length of ith ellipsoidal principal axis and uL, are ordered from the largest 
to the smallest 

A chaotic system is established when some of ub are positive while a regular one 
is established when uL, = 0. The value of uLt measures the largest of these exponential 
growths. Figure 2 shows the result of uLl versus time, t ,  for E = 1.0 calculated for six 
orbits. We see an apparent convergence of uLt = 0.1 for three of the orbits which are 
taken with initial conditions in the stochastic regions in figure l(b). On the other hand, the 
convergence of uL, 2 0 comes from the other three orbits which have initial conditions on 
the KAM curves in figure l(b). This result shows that the chaotic and ordered regions coexist 
in figure l(b) and indicates the onset of the chaos [7,8], Thus we can see that this system 
exhibits an order-to-chaos transition  similar to the one found in the magnetic monopole 
solution [9]. It is worthwhile pointing out that the Lyapunov exponent uL, corresponding to 
the regular orbits has a power-law dependence on time, which reflects the typical behaviour 
of the long-time correlation in the Hamiltonian system. Indeed, our results in figure 2 have 
the same tendency as one obtained in the H6non-Heiles problem [8]. 

In order to study how the relative measure of the chaotic region depends on K, we 
calculate uL, for many initial points in the following manner. Initial points are chosen on 
a grid of the (x, y) space subdivided into SO x 50 bins, and lo6 successive iterations of 
each initial point are computed. To judge the convergence of oL,, we used the results of the 
numerical simulation done in figures 1 and 2. They indicate that the value of U,, less than 

I 02 1 0' I 0' I d  I 0' 
t 

Figure 2. Behaviour of 4, at E = 1.0 and K = 0.4 for six initial points taken in the stochastic 
(three curves approaching to 0.1) or regular (other three CUNS) regions in figure l(b).  
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Figure 3. Fraction gC ofthe chaotic region in the phase space versus the coupling constant K 

at E = 1.0. 

6* c+ 0.001 approaches zero. Thus we regard an initial point (XO, yo) as regular when this 
(xo, yo) leads to uL, less than U*. From these criteria we determined the fraction pLc of bins 
occupied by the initial points which lead to chaos (uLl > U*) .  Figure 3 shows the result 
for E = 1.0, which indicates that pc is almost zero for 0.05 < K < 0.20 and K > 4.00. 
Especially, it is shown that the system becomes near-integrable for K > 4 E ,  at which point 
the topology of the potential well of (IO) changes. Qualitatively the same tendency was 
also obtained for E = 10.0 and E = 100.0. 

In conclusion, we have studied the chaotic properties of the sphaleron solution in the 
SU(2) YMH theory in the limit of spatially homogeneous fields. From the results on the 
Poincan5 surface of section and the Lyapunov characteristic exponents, we have found that 
the sphaleron solution exhibits the order-to-chaos transition, whose threshold depends on 
the coupling constant. Such a transition phenomenon has also been observed in the case of 
the magnetic monopole solution of the SU(2) YMH theory [9]. 

Let us, finally, comment on our results. First, we point out the reason for the appearance 
of similar transition in both solutions~by noticing the difference of the representation of the 
4 fields. In the sphaleron case 4 belongs to the fundamental representation while in the 
monopole case 4 to the adjoint representation, (T")ij _= ie.!j. These differences reflect 
only the strength of the coefficient x2y2 in (10). The integrability of this Hamiltonian can 
be examined by the Painlev6 analysis [lo]. Its integrability condition to (10) holds only 
special values of the coefficients (ci, c2) = (q, 0) -or (K, K) in clx4  and c2xZy2, which 
cannot be satisfied in the present system. Thus the system we considered is non-integrable 
so that it seems to be natural that the similar order-to-chaos transition is observed for both 
topological soliton solutions. Since our dynamical'systems obtained for homogeneous fields 
are finite-dimensional ones. they are an extreme simplification of a full infinite-dimensional 
field theory. Conceming the chaos, however, it has been shown in the case of the magnetic 
monopole solution that consistent results can be reproduced both in the field theories IS] 
and their homogeneous versions [91. Thus it seems that the order-to-chaos transition is 
characteristic of the non-Abelian field theories with non-trivially topological solitons such 
as the monopole and the sphaleron. 
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Second, the role of chaos in the field theories has been discussed for several issues in 
high-energy physics. For instance, it has been speculated that the Kolmogorov-Sinai entropy 
is responsible for the mechanism of the entropy production associated with the quark pair 
production in the quark-gluon plasma [ 111. The chaos of the magnetic monopole solutions 
hasbeen linked to the problem of the colour confinement [ 121. In contrast with the monopole 
solution, however, it seems that the chaos of the sphaleron solution has not attracted much 
attention in the study of the sphaleron transition 1131. Especially, in the numerical study of 
such a transition the chaotic properties of the solution become significant in the course of 
solving the classical equations of motion in real time. Thus it would be of importance to 
investigate how the existence of the order-to-chaos transition affects the transition rate since 
the fluctuation causes the classical transitions from one vacuum to another passing over the 
sphaleron. 

Third, we note the case of the Abelian gauge theories with the topological solitons. 
This case leads to a very different form of the potential from the non-Abelian case because 
of the lack of the non-Abelian term propodonal to x4 in (10). Since the potential well in 
this case is open to the x-axis direction, the motion of a particle with an energy E is not 
bounded by the line with a potential energy W = E .  In these circumstances the orbit of 
a particle in the well is apt to move stochastically [I41 so that we would have the chance 
to encounter a quite new pattem of the on& of chaos in the Abelian case. Thus it is 
interesting to investigate the dynamical property of the U(1) vortex solution in the Abelian 
Higgs model [I51 from the viewpoint of chaos. 

I would like to thank Drs H Fujisaka, S Ohta, M Nambu, T Hada, H Akama, M Hashimoto, 
Y Ookouchi, H Sakaguchi and S Kawabe for helpful discussions. I would also like to 
thank INS Scientific Computational Programs of University of Tokyo for a very generous 
allowance of computer time and for extensive support. 
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